BLUE PRINT FOR QUESTION PAPER

APPLIED PHYSICS II (R - 2012)

FE - SEM II

Contentwise Blue-print of of Q.P.

		8. /		
Module	Unit No.	Unit Title (and contents)	Unit	Module
No.		11/	wise	wise Total
			Marks*	Marks*
01	1.1	Interference in thin film - Introduction,	10	33
.00	Chat. a	interference due to reflected and transmitted	00%	1.1.49
100	1071/4	light by thin transparent parallel film, origin of	1 (3)	100
# 1		colours in thin film, Wedge shaped thin film,		/ 1 .
		Newton's rings		11/
	1.2	Applications of interference - Determination of	10	3. I L
100		thickness of very thin wire or foil,	100	40.4
	_	determination of refractive index of liquid,		
		wavelength of incident light, radius of		
		curvature of lens, testing of surface flatness,	- 40	0.7 - 1
		non-reflecting films, Highly reflecting film		() 1
	1.3	Diffraction of Light – Introduction;	13	- 40.0
		Fraunhoffer diffraction at single slit,		
		Fraunhoffer diffraction at double slit,		
		diffraction due to N- slits (Diffraction Grating),		
		missing orders, Highest possible orders,		
		determination of wavelength of light with a		
		plane transmission grating; resolving power of		
		a grating, dispersive power of a grating.		
02	2.1	Fibre optics: Introduction, total internal	10	20
		reflection, basic construction, optical fibre as		
		light guide and types of optical fibre;		
		Numerical Aperture and maximum angle of		
		acceptance, Numerical Aperture for graded		
		index fibre; V-number, Maximum number of		
		possible orders; Losses in optical fibre; Merits		
	2.2	of optical fibre; Applications.	10	
	2.2	Lasers : Quantum processes as absorption, spontaneous emission and stimulated emission,	10	
		metastable states, population inversion,		
		pumping, resonance cavity, Einsteins's		
		equations, Helium Neon laser, Nd:YAG laser,		
		Semiconductor laser, Applications of laser-		
		benneonductor laser, Applications of laser-		

<u>www.campuskeeda.com</u> -> one stop for Engineering colleges, Question papers and projects

		Holography (construction and reconstruction of holograms) and other applications.				
03	3.1	Introduction, Wave particle duality, de Broglie wavelength, experimental verification of de Broglie theory, properties of matter waves, wave packet, group velocity and phase velocity, Wave function, Physical	05	18		
	3.2	interpretation of wave function Heisenberg's uncertainty principle, Electron diffraction experiment and Gama ray microscope experiment, Applications of uncertainty principle,	05	1		
,A	3.3	Schrodinger's time dependent wave equation, time independent wave equation - Motion of free particle, Particle trapped in one dimensional infinite potential well.	08	10		
04	4.1	Electrostatic focusing, Magnetostatic focusing, Cathode ray tube (CRT), Cathod ray Oscilloscope (CRO), Application of CRO,	08	08		
05	5.1	Introduction, Meissner Effect, Type I and Type II superconductors, BCS Theory(concept of Cooper pair), Josephson effect, Applications of superconductors - SQUID, MAGLEV	07	07		
06	6.1	Introduction to nano-science and nanotechnology, Two main approaches in nanotechnology - Bottom up technique and top down technique, Tools used in nanotechnology such as Scanning electron microscope, Scanning Tunneling Microscope, Atomic Force Microscope, Nano materials: Methods to produce nanomaterials, Applications of	10	10		
		nanomaterials, Different forms of carbon nanoparticles, carbon nanotubes, properties and applications.				
Grand Total						

^{*} Variation up to ± 2 marks is possible in the total marks for the module

[#] Grand total includes all optional Q. Nos. from 2 to 6 and internal options of Q. No. 1

<u>www.campuskeeda.com</u> -> one stop for Engineering colleges, Question papers and projects

APPLIED PHYSICS II (R - 2012)

FE - SEM II

Total 6 questions of 15 marks each

Q.1. Compulsory Will contains 7 bits of 3marks each.

Solve any **Three** from (Q.2 to Q.6)

Question	n	Marks	Unit No		
	(a)	03	1.1		
	(b)	03	1.3		
fig.	(c)	03	2.1		
Q.1	_(d)	03	2.2		
a m	(e)	03	3.3		
F 1 F 1	(f)	03	4.1		
	(g)	03	5.1		
Q.2	(a)	08	1.2		
	(b)	07	2.1		
Q.3	(a)	08	2.2		
	(b)	07	1.1		
Q.4	(a)	05	1.3		
	(b)	05	3.2		
	(c)	05	5.1		
Q.5	(a)	05	1.3		
	(b)	05	3.3		
	(c)	05	6.1		
Q.6	(a)	05	3.1		
	(b)	05	4.1		
	(c)	05	6.1		

<u>www.campuskeeda.com</u> -> one stop for Engineering colleges, Question papers and projects

APPLIED PHYSICS II (R - 2012)

FE - SEM II

Distribution of Marks:

Module	Unit	Weight	Q. 1	Q. 2	Q. 3	Q. 4	Q. 5	Q. 6	Weightage
No.	No.	age	(comp)	(opt)	(opt)	(opt)	(opt)	(opt)	for
			3 x 7	8+7	8+7	5+5+5	5+5+5	5+5+5	Module
01	1.1	10	03		07		/		33
	1.2	10		08		L			
	1.3	13	03			05	05		
02	2.1	10	03	07	- 46	1.1			20
100	2.2	10	03	1.1	08		1		
03	3.1	05			f		И	05	18
' '	3.2	05	2	Þ	J V	05		j	11
	3.3	08	03		,		05	ì)
04	4.1	80	03					05	08
05	5.1	07	03			05			07
06	6.1	10					05	05	10
Total		96 (60)	21 (15)	15	15	15	15	15	96